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ABSTRACT

In this paper, the authors estimate the invariant density function of a stationary process from
noisy observed data, using the kernel density estimation technique. We examine observations
that have been contaminated by another stationary process with a known invariant density
function. The study focuses on stationary processes with strong mixing properties. Both the
ordinary smooth and the supersmooth noise density function classes are investigated. The
research establishes upper bounds for the mean squared error of the estimator to evaluate the
rate of convergence. The theoretical properties of the estimator’s convergence are illustrated
through simulation studies, in which the authors estimate invariant density functions for two
Stationary processes from noisy observed data generated using the R language. Additionally,
a computational example with data on Duchenne muscular dystrophy is also presented to
demonstrate the estimator s effectiveness.

Keywords: Deconvolution; Kernel density estimation; Mean squared error,; Stationary
process,; Strongly mixing (o — mixing ).

1. INTRODUCTION be expressed as:

Let us consider a strongly mixing Y. =X, +¢;, j=L..,n (1)

.Statlo,n ary  process X Wlth an_ unknown Theaimofthispaperistononparametrically
invariant density function f, . Suppose

estimate the invariant density function f, of
we have a sample Y .., Y ~drawn from

he  distributi ¢ N 0 the stationary process X, from a sample of
the  distribution 0 (= TE,  WRCTC iy observations Y,...Y,.

4, <t,<..<t,. Here, the process ¢, is
assumed to be independent of the process X .
The process Y, serve as noisy versions of the
processes X , while g, represents a random  X,,.... X, ~ X, ¢&,,....6,~ &> .model '(1)»
measurement error process with a known investigated by Fan, has provided an optimal
invariant density function g called the error ~rate inmean squared error (MSE) convergence
density. Consequently, the invariant density and minimax theory (see Fan [1, 2]). But in

function of the process Y, is determined by reality, many factors are not independent, and
assuming they are generated from stationary

o0
Ty (y):LO fr(y=x)g(x)dx- processes would be more reasonable.
We assume that the o —mixing stationary  Stationary processes are important stochastic

processes are observed at discrete time processes with many practical applications

t;=JjA (where A is a positive constant). (such as representing random dynamical

For brevity, we will denote X, .Y, ,¢, by systems or the returns of assets, exchange

X,,Y,,¢;, respectively. Thus, the model can  rates, and other economic factors). Therefore,

In the scenario of independent and
identicallyd distributed Siid) random variables
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the problem of estimating the invariant
density function /X for a stationary process,
either nonparametric or parametric, through
collected data is a topic of interest to many
researchers in both cases of error-free data
(where & =0, see N’drin and Hili [3, 4])
and noisy data (where & #0, see Masry [5,
6], Trong and Hung [7]). However, in studies
estimating  f,, researchers have not yet
evaluated the convergence rate of MSE, nor
have they conducted simulations and real data
calculations.

In this paper, the authors investigate the
estimation of f, for the model (1) under
the assumption that both X, and ¢ are
o —mixing stationary processes, suitable
for various real-life scenarios. The main
research outcomes are the convergence
rate of MSE of the estimations presented in
Theorems 3.1 and Theorem 3.2 under two
cases of the error density class. The error
density classes are ordinary smooth under
assumption  ¢(1+|p )_K S‘gﬁ (p)‘ <C(1+[p )_K
and supersmooth under assumption

cexp(-B1pl)<|¢" (p) < Cexp(-AIpl).

where g/is the Fourier transform of the
error density g and O0<c<C,x,B,y>0
are constants (see Meister [8]). Additionally,
the paper conducts simulation and numerical
computations with real data to illustrate the
achieved results of the theory.

The paper is organized as follows:
In Section 2, the proposed estimator is
introduced. Section 3 presents the main
results on MSE convergence along with
outline proofs. Section 4 is dedicated to
simulation studies, while Section 5 focuses
on empirical applications, specifically
analyzing Duchenne muscular dystrophy
data. Finally, the paper concludes with a
conclusion in Section 6.

2. KERNEL ESTIMATION METHOD

For 0>1, let denote the set of Lebesgue
measurable functions ¢ satisfying

1=V G ) <o For e,

27

S6 09 (06/2024)

(x)dx

Fourier transform of /. In this paper, we
address the issue of dependent processes.
Various dependence conditions have been
extensively studied (see Bradley [9]). Here,
we focus on the «a—mixing dependence
introduced by Rosenblatt. Let F;* denote
the o —algebra of events generated by
the random variables {X.I.,ISiSjSk}.
The process {Xj} is termed o —mixing
(see [9] and Rosenblatt [10]) if
sup

sup s P[AB]-P[4].P[B] =a, (k)

Jje¥ AeF/ BeF

denote the

let fft (p) — Jj“’ ipx

e
0

+o0

J+k

—0 as k — +oo, where a, (k) represents
the strong mixing coefficient of the process
{ Xj}. This coefficient quantifies the degree
of dependence. When (X;) is mutually
independent,  then  supa, (k)=0.The
condition ¢, (k) —> 0 implies that X, and
X,,, become “asymptotically independent”
as k —oo. Utilizing these dependence
properties, we establish a consistent estimator
for deconvolution.

to
X 1s

The kernel density estimator use
estimate the unknown invariant density
defined as follows:

fn(x)zéil//(x) VxeR, (2)

K' (pb,)
g"(p)

b, is the bandwidth satisfying b > 0
vVneN, K denotes a known kernel function

+00

where ¥ (x) =% I exp[ip(Yj —x)}

—0

dp,

and K/ represents the Fourier transform of K .
3. MAIN RESULTS

3.1. Some assumptions
(i) Thekernel function K € L (R)N L, (R),
J.jmK(z)dz=l’ J.E:ZK(Z)dzzo,

+o0

.

K7'is symmetric function, supported on [-1;1].

2’K (z)<oo and the Fourier transform

(i) Let #x>0. For some 0<c<(C,
the noise density g belongs to the ordinary
smooth class with the condition:
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c(1+]p) " <le” (p) = C1+]pl) "
(iii)Let B,y >0.Forsome 0 <c<C,the
noise density g belongs to the suppersmooth

class with the condition:

cexp(-B| pl)<|¢” (p) < Cexp(-Blpl).

(iv)Let §>0. X,,¢ have a—mixing
coefficients a, (k),a, (k)< 0(1/k2+5) :

(v) The 2-dimensional probability density
function f, , (u,v) exists and is bounded for
all 1< ] k < n.

3.2. Mean square error convergence
3.2.1. Theorem 3.1

Let the assumptions (i), (iii), (iv), (v) hold.
If f (x) is twice differentiable and [y (x)
is continuous and bounded, by choosing the

banchwidth b, = 0(n™*),
E(f" (x)—fx (x))2 < O(n*4/(5+2,<))

at continuity points x of f,(x).

3.2.2. Theorem 3.2

Let the assumptions (i), (iii), (iv), (v)
hold and let 4, 6(0,1/(2,3)). If fX(x) is
twice differentiable and fy (x) is continuous
and bounded, by choosing the bandwidth

b= (nn) ", B(£,(x)~f,(x)) <O((tnn) *)
at continuity points x of f, (x)

Remark. 1t is worthwhile to compare
the convergence rate of MSE as shown in
Theorem 3.1 with that of iid observations,
proven to be optimal in Theorem 2 of [3],
and the convergence rate of MSE as shown
in Theorem 3.2 with that of iid observations,
proven to be optimal in Theorem 1 of [3].
According to these theorems, if we set
m=2,aa=0,l=0, the convergence rate of
MSE remains the same for both scenarios:
random variables generated from « —mixing
stationary processes and iid random variables.
In the iid case, Fan demonstrated that
these convergence rates are optimal. This
comparison highlights that the convergence
rates achieved in Theorems 3.1 and 3.2 are
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indeed quite good.

The proofs of the two Theorems are quite
lengthy and complex; here, the authors only
provide a brief outline.

Proof of Theorem 3.1. We have
bias( £, (x)) = £( £, (x)) - £ (x)
TK( jfx (x—u)du— fy(x)

vib”i: ()[fX(x vb,) ]dv
!jK(v){f;(x)(—vb,,>+;f;<x><—vbn>
+0(bn)2Jdv

_b J.VZK dv+0 b, )2.
Therefore, bias (fn (x)) < O(bj )
By Lemma 5.4 of [13], we obtain

Var(fn (x)) < O(l/(nb}fz")).

By choosing the bandwidth O(n "),

we have
E(£,()- ()
= Var(fn (x)) + bias® (fn (x))
< 0(n74/(5+z;())'

Proof of Theorem 3.2. Similarly, we have
bias( £, (x)) < O(87).

Let o, = exp[(—ﬂ )b, } A modification

to the proof of Lemma 5.4 of [7] yields the

o Var(fn (x)) < 0(1/( ))

And by choosing the band width
b,=2,"" (In n)fl/y, we have

E(£,(x)= £ (%))
= Var(fn (x))+bias2 (fn (x))

< O((]n ”)4/7).

nb @’

n n
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4. SIMULATION STUDY
4.1. Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross (CIR) process is
a flexible modeling tool, often used to simulate
the fluctuations of variables with a mean-
reverting characteristic. In finance, the CIR
model is commonly applied to model interest
rates and prices, but it also finds applications
in other fields such as medicine and data
science. For instance, in medicine, it can be
used to simulate the dynamics of biological
indicators like hormone concentrations,
aiding in the assessment of medical tests’
performance based on the Receiver Operating
Characteristic (ROC) model. In data
applications, the CIR model can also be used
to simulate the fluctuations of measurement
indices in data classification processes,
enhancing the performance and reliability of
forecasting and classification models.

The CIR process is the solution to the
stochastic differential equation

dX,=(6,-6,X,)dr +0,\[X,aw,
where 6,,6,,6, eR .

Under the assumption that 26, > 6} , there
exist a positive 7 such that «, (k)<e ™/4
(see Genon-Catalot, Jeantheau and Lardo
[11], Corollary 2.1). Consequently, the
Cox-Ingersoll-Ross process is exponentially
a —mixing and its invariant distribution
follows a gamma density function

a_.a-l1

bx
Ix (x): F(a

parameter a = 26, / 0; and the rate parameter
b=126,/6; . Assume that X, is exponentially
a —mixing stationary CIR process with
6, =2, 6,=1/2, 0,=1(Gamma density with
a=4,b=1) and the noise random variables
¢, are Laplace random variables, which have
the density function g(x)=(1/ 2)e"x‘ and the
characteristic function g’ (p)= 1/ (1 + pz) .

exp(—bx), where the shape

We now conduct simulations for the CIR
process using the R language. First, we use
the ‘sde’ package to generate data for the
process X, (see lacus [12]). We also generate
data for &, and then construct the dataset
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{Y, = Xj+gj}j=17'. Finally, we employ the
proposed estimator given in (2) to estimate
the invariant density f, of the process X, .
The authors choose the bandwidth b =n"""
accordingto Theorem 3. l andthekernelfunction

K(x)— 48cosx(1_15/x2)_144sinx(2_5/x2)

- 4 5
with K’ (p)=(1-p*) I (p). where

Y/ /9
][71;1] (p) - {

These simulations encompass three
distinct sample sizes: »n=100, »n=200,
and » =500, facilitating an analysis of the
sensitivity of the estimation to sample size.
Each simulation comprises 100 replications
of observations for the CIR process Y. The
results of the estimator of f, are presented
in Figure 1, and the empirical MSE at various
points are shown in Table 1.

1 when pe[-11] "
0 when pe[-11]

= Gamma Invariant Density

Kemel Estimator Density (n=100)
=== Kemel Estimator Density (n=200)
- = Kernel Estimator Density (n=500)

Density
0.15 0.20

0.10

0.05

0.00

Figure 1. The Gamma invariant density
function of the CIR process X, with

& ~ Laplace(O,l) and its Estimator for
different sample sizes.

Table 1. The empirical MSE of the
estimator at various points X for the CIR
process X, with &, ~ Laplace(0,1) and
different sample sizes.

E(f,(x)~ /e (x))

X

n=100 n =200 n =500
1 0.000108567  0.000033427  0.000073352
2 0.003448514  0.002718298  0.002204957
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X
n=100 n =200 n=1500

3 0.001796847  0.001645794  0.000219733
4 0.000229594  0.000260438  0.000334539
5 0.002749886  0.002513594  0.002970994
6 0.000711336  0.000371551  0.000334867
7 0.000321735  0.000065087  0.000003606
8 0.000047871  0.000099706  0.000060205

4.2. m - Dependent stationary process

An important form of dependence, where
distance serves as a measure of dependence,
is the m—dependencescenario. A stationary
process {X } o s considered $m$-dependent
if two sets of random variables (X X, )
and {X,,X,.,,..} are independent whenever
h—k>m. It’s evident that a, (/)=0 for
[>m, and the m—dependence stationary
process is a specific instance of a strongly
mixing stationary process.

The m—dependent stationary process is
a powerful tool used to simulate real-world
situations, particularly those with strong
dependencies among variables over time. One
of its primary applications is in the field of
finance, where it can model the fluctuations of
stock prices, interest rates, and other financial
indicators. Additionally, the m —dependent
stationary process can be applied in weather
forecasting, simulating the variability of
weather factors such as temperature, air
pressure, and precipitation. Moreover, in data
science, the m —dependent stationary process
can model dependencies among variables in
time series data.

In this simulation, we assume that{ }/ ’
is 30—dependent stationary process, and its
invariant distribution is normal distributions
with g =5,0"=2. The noise variables
&, are standar nomal random variables,
which have the characteristic function

g"(p)=exp(-p’/2).
Now we’ll simulate using R. Initially,
we generate iid normal random variables

{u ,-}jez Subsequently, a 30— dependent
stationary process { Xj} is created with

JEZ
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=(1f30)(U,+ Uy +.tU ) j =L

Using the bandwidth b, =(Inn) "
according to Theorem 3.2 and the same kernel
function detailed in Section 4.1, simulations
are executed across three sample sizes:
n=100, n=200, and »=500 to examine
the impact of sample size on estimation
sensitivity. Each simulation is repeated 100
times, and the findings are summarized in in
Figure 2 and Table 2

— == Normal Invariant Density

Kernel Estimator Density (n=100)
===+ Kernel Estimator Density (n=200)
= = Kernel Estimator Density (n=500)

Density

000 0.05 0.10 0.15 020 0.25 0.30 0.35

Figure 2. The Normal invariant density
function of the 30— dependent stationary
process X with &, ~ N(0,1) and its Estimator
for different sarnple sizes.

Table 2. The empirical MSE of the
estimator at various points x for the
30— dependent stationary process X = with
& ~N (0,1) and different sample sizes.

x E(f,(0) £ (x))
n=100 n=200 n =500

1 0.000177833 0.000132823  0.000102027
2 0.000950244  0.000703886  0.000513955
3 0.000420404 0.000266311  0.000289713
4 0.001668186  0.000798099  0.000603855
5 0.004383285 0.00349504 0.003039045
6 0.001002422  0.000544171 0.000458958
7 0.000356865  0.000257928  0.000240189
8 0.001177767  0.000582998  0.000534965
9 0.000212997  0.000132662  0.000117591
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S. DMD DATA

This dataset pertains to a study on
Duchenne muscular dystrophy (DMD), a
progressive genetic disorder passed from
mother to child (see Reiser [13]). DMD is
one of the most severe and common forms
of muscular dystrophy in humans, typically
manifesting in children before the age of 3
and resulting in fatality by the early 20s. With
no effective treatment currently available,
screening females as potential carriers of
DMD is of paramount importance. The
dataset includes blood samples from two
groups: normals and DMD carriers. Of
particular interest is the serum creatine kinase
enzyme. Data is available for 38 carriers and
87 normals, with some subjects providing
multiple blood samples treated as replicates.
The number of replicates per subject varies
from 1 to 7, creating an unbalanced dataset.

Let xy and X denote independent
random variables representing the distribution
of the marker in the populations of diseased
and healthy individuals, respectively, with
availablerandom samples X,..X andX,...X .
According to Reiser, in many s1tuat10ns the
variables X and X are not directly observable
but are measured with additive normally
distributed random measurement error. Let
YJ[ and Yggj, denote the , th replicate taken
on the J th subject in the diseased population
and the s, th replicate taken on the 4 th subject
in the healthy population. Thus

le]. =X_;+S‘/l/., j=1,...,l’l,lj=1,...,pj

Y, =X, +¢&,, k=L..ms, =1..q,

with &5, ~N(0,07), &, ~N(0,07). In this
context, the random variable sequences
Y]],...,Ylpl,...,Ynl,...,ann al’ld
Y....w¥,.->Y,,....Y,,  demonstrate

p —dependent and g —dependent processes,
correspondingly, with p=max{p,...,p,}
and ¢ =max{q,,...q, | .

Upon examination of the data described
in the DMD dataset, it was observed that the
marker values exhibited significant skewness.
Therefore, a log transformation was applied to
improve normality. Under the assumption that
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XNN&L,X,O-)Z() and X~N(,ux,o32(), Reiser
utilized the maximum likelithood estimation
method to estimate the probability density
functions f, of x and f,of X . Now, with

o’ =[n(p—1)]]ZZ]:(Y1 ?,—)2
ZZ( s ) , the

authors will use propose(Si estimator given
in (2) to estimate £, and f  without any
distributional assumptions about Y and X. We
use the kernel function K described in Section
4.1 and choose the bandwidth b, =(Inn) "~
in accordance with Theorem 3.2. The results
are illustrated in Figure 3 and Figure 4.

and

O' —m(q

—— MLE Density

td
<) - " :
Kernel Estimator Density

Density
0.3 04

0.2

0.1

0.0

Figure 3. The maximum likelihood estimator
(MLE) density and kernel estimator density for
the marker.

= MLE Density
— = Kernel Estimator Density

1.5

Density
1.0

0.5

0.0

Figure 4. The maximum likelihood estimator
(MLE) density and kernel estimator density for
the healthy.
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6. CONCLUSION

In this study, the authors estimated the
invariant density function of a stationary
process from noisy observed data using
the kernel density estimation method.
The results show effective performance,
with the convergence rate for the MSE as
demonstrated in Theorems and simulations.
The convergence rate of MSE is quite good
when compared to the iid case. The method
was validated with both simulated data,
specifically the CIR and stationary processes,
and real data on Duchenne muscular
dystrophy (DMD).

Key advantages of this study include:

e Reliable Estimations: The kernel density
estimation method provided dependable
estimates for invariant density functions.

e Practical Applications:  Successful

application to both simulated and real-world data.

However, the choice of bandwidth was not
optimized, which may affect the convergence
rate. Future research should focus on this
aspect to enhance the method’s performance.

Overall, this study contributes valuable
insights into the estimation of invariant density
functions from noisy data and highlights areas
for future improvement.
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